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ABSTRACT
The advent of large cosmological sky surveys – ushering in the era of precision cosmology – has been accom-

panied by ever larger cosmological simulations. The analysis of these simulations, which currently encompass
tens of billions of particles and up to trillion particles in the near future, is often as daunting as carrying out the
simulations in the first place. Therefore, the development of very efficient analysis tools combining qualitative
and quantitative capabilities is a matter of some urgency. In this paper we introduce new analysis features im-
plemented within ParaView, a parallel, open-source visualization toolkit, to analyze large N-body simulations.
The new features include particle readers and a very efficient halo finder which identifies friends-of-friends
halos and determines common halo properties. In combination with many other functionalities already existing
within ParaView, such as histogram routines or interfaces to Python, this enhanced version enables fast, inter-
active, and convenient analyses of large cosmological simulations. In addition, development paths are available
for future extensions.
Subject headings: methods: numerical — cosmology: large-scale structure of universe

1. INTRODUCTION

During the last two decades, cosmological measurements
and predictions have advanced from the level of estimates to
precision determinations – at better than the 10% level – of the
major cosmological parameters. In the next decade, ongoing
and upcoming surveys such as the Sloan Digital Sky Survey
III, PanStarrs, the Dark Energy Survey, the Large Synoptic
Survey Telescope, the Joint Dark Energy Mission, or Euclid,
to name a few, promise improvements in the measurement
state of the art by yet another order of magnitude. At the same
time, theoretical predictions at the same or better levels of ac-
curacy are needed to fully exploit the information available
from these surveys. Predictions of this quality can only be
obtained by high-performance simulations which cover cos-
mological volumes representative of those observed by the
surveys. At the same time, the simulations must possess high
enough mass and force resolution to reliably resolve dark mat-
ter halos which host galaxies. For gigaparsec cubed volumes,
the requirements translate to tens to hundreds of billions of
simulation particles.

In the past several years, this simulation challenge has been
attacked from different perspectives. A few ‘hero’ simulations
have been carried out: The Millennium simulation from 2005
with ∼10 billion particles and the two “Horizon” simulations
from 2009 with ∼70 billion particles each (Teyssier et al.
2009; Kim et al. 2009), but with lower force resolution, are
prominent examples. Another approach is to run more moder-
ately sized simulations (still one to ten billion particles each)
but with many realizations and different volumes for one cos-
mological model. This allows for efficient gathering of statis-
tics and the determination of covariances (e.g. the LasDamas
Project by McBride et al. (2010) and the MICE simulations
by Crocce et al. 2010). Such simulations can also be carried
out for different cosmologies (e.g. the Coyote Universe by
Heitmann et al. 2010, 2009; Lawrence et al. 2010) to explore

the cosmological parameter space and derive predictions for
different statistics of interest. Both approaches generate a
large amount of data and the analysis task is often as demand-
ing as carrying out the simulations themselves. It is therefore
very desirable to develop efficient, flexible, versatile, and eas-
ily extendable tools to help with the analysis task. Taking this
thought one step further, an analysis tool that combines quan-
titative and qualitative features would be particularly conve-
nient; such a tool should allow visualization and analysis of
the data at the same time, and allow user-customizable fea-
tures and extensions.

FIG. 1.— ParaView visualization of a billion particle simulation from the
Coyote Universe suite (Lawrence et al. 2010). Left: visualization of all parti-
cles colored by their velocities; right: visualization of a sub-volume showing
particles in halos and the halo centers.

http://arxiv.org/abs/1010.6128v1
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FIG. 2.— Examples of different analysis capabilities of ParaView. The simulation shown here is described in Section 3.1. The upper left panel shows all the
particles in the box colored with respect to their velocities, the lower left panel shows a zoom-in into a dense region. The upper right panel shows a histogram of
halo velocities. The lower right panel shows only the particles that reside within halos.

Over the last several years we have developed a visualiza-
tion and analysis tool based on ParaView, an open-source, par-
allel visualization framework. Figure 1 shows an example vi-
sualization of a billion particles carried out on 128 processors.
We used ParaView for some of the analyses carried out in
Heitmann et al. (2008). In Hsu et al. (2010) we demonstrated
the tool’s efficiency for scientific investigations by analyzing
the formation of halos over time. In the current paper, we in-
troduce the new features we have implemented into ParaView
to analyze and visualize large cosmological N-body simula-
tions. These features are included in the latest ParaView 3.8
release1. ParaView is a very convenient platform for several
reasons: (i) it is parallel and therefore well suited for very
large data sets, (ii) some general data analysis routines already
exist within it, (iii) it is open source, and (iv) it can be coupled
with relative ease to existing codes and includes interfaces to
programming languages, e.g., Python.

We have implemented two different particle readers into
ParaView, one based on the ‘cosmo’ format introduced in
Heitmann et al. (2005), the other following the ‘GADGET’
format2 widely used by the cosmology community and the na-
tive data format of the cosmology code GADGET-II (Springel
2005). The cosmo format is a simple binary format for storing
particle positions, velocities, tags, and mass. The GADGET
format allows for more flexibility and information, although
currently the ParaView reader only reads the N-body parti-
cles from the GADGET files. A future ParaView release will
include the option of reading gas information as well. In ad-
dition to the readers, we have implemented a very efficient

1 http://www.paraview.org/
2 http://www.mpa-garching.mpe.de/GADGET/users-guide.pdf

parallel halo finder that supports the friends-of-friends (FOF)
algorithm. Combined with the analysis features already avail-
able, such as histogram routines, density routines, compar-
ative visualization, movie options and so on, ParaView pro-
vides a convenient and flexible visualization and analysis en-
vironment.

The paper is organized as follows. First, we give a short
overview of ParaView and briefly describe the new cosmol-
ogy modules that have been implemented. In Section 2.2.1
we provide a more detailed description of the parallel halo
finder and the halo properties available. We give an exam-
ple for how ParaView can be used to analyze cosmological
simulations in Section 3 and conclude in Section 4. We give
a brief introduction on the ParaView GUI and the use of the
cosmology filter in the Appendix.

2. PARAVIEW

ParaView (Ahrens et al. 2005) is a general-purpose, open-
source, scientific visualization server technology built on top
of VTK (the Visualization Toolkit) (Schroeder et al. 1996).
Through the ParaView server, visualization of large-scale data
is possible by parallelism and data streaming on a scalable
server backend. The default ParaView application runs a
built-in single-threaded ParaView server for small visualiza-
tion tasks. For larger data, it can connect to a remote Message
Passing Interface (MPI) parallel ParaView server backend that
is running on a visualization cluster or parallel supercomputer.

The process of visualization within ParaView consists of
constructing VTK visualization pipelines of readers and fil-
ters, where outputs are implicitly connected to render views.
Readers allow data to be imported into the pipeline, while fil-
ters allow data to be analyzed and manipulated through pro-
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cessing. Render views provide visual representations of data
that a user can interact with. Visualization pipelines are con-
structed through a front-end interface, which is capable of
communicating with the ParaView server, and are executed
on the data by the server. Visual results are displayed by the
front-end from images or geometry sent back by the ParaView
server after processing data using a constructed visualization
pipeline.

A variety of tools and languages can interface with the Par-
aView server backend to analyze and visualize data. The im-
ages we show in the following were created using the default
ParaView graphical user interface client available from the
ParaView website. The default ParaView GUI is a Qt applica-
tion, with Python scripting support, that is available on Win-
dows, OS X, Linux, and on any other platform that is able
to compile C++ code with the Qt framework (Summerfield
2010). ParaView is also capable of performing visualization
and analysis through other front-ends, such as task specific vi-
sualization tools built on top of the ParaView server language
bindings in Python, Tcl/Tk, C++, Java, and Javascript. The
ParaView parallel server backend compiles on any platform
capable of compiling C++ and MPI code. Information on us-
ing ParaView and downloading source and binaries is located
at paraview.org.

2.1. Parallel Reading
Assuming that the ParaView server is running in parallel

(the reader will works in serial mode as well), the first task to
visualize cosmology data is to correctly read the data and dis-
tribute it among the processors. The ParaView reader we have
implemented for the “cosmo” format has also been extended
to work with the “GADGET” format (for N-body particles).
Particle files can be single monolithic files or multiple files
generated per-processor during the simulation.

The first task the reader performs is assignment of proces-
sors to regions in space, such that a processor will be assigned
a contiguous block in space. We use a three dimensional spa-
tial decomposition. Each processor will eventually obtain all
of the particles in that space. The second task is reading the
particle file or files. If there is a single file, all of the proces-
sors will read into memory a linear portion of the particle list,
temporarily taking ownership of the particles in that segment
of list. Likewise, if there are per process files, each processor
will read a file assigned to it, and take temporary ownership
of the particles located in that file. If there are fewer or more
files per process, the files are divided such that each processor
reads an equal number of particles.

Next, processors take ownership of the actual particles that
belong to them through communication of particles, i.e., mov-
ing the particles to the correct processor that owns the spatial
region containing the particle. In the first step, the proces-
sors examine the particles currently in memory and separate
out the particles that belong on that processor, from the par-
ticles that do not belong. Next, all of the processors simul-
taneously send a buffer of particles that do not belong to the
next rank processor, while receiving a buffer from the previ-
ous rank processor. Each processor will examine the buffer
received and take out the particles that belong to it. If the
number of files is greater or equal the number of processors,
this process is repeated for p − 1 rounds, where there are p
processors, until all of the particles are in memory on the cor-
rect processor. In the case of more processors than files, the
round robin circles are smaller so that every processor reads
a file if possible. For example, for 16 files and 64 processors,

4 processors will read each file and the round robin chain is
[(p/4)−1] in size.

Finally, in order to perform correct halo finding per-process,
we allow for spatial overlap in the per-process volumes and
duplicate the particles across overlap regions. Given that the
entire space is divided into blocks and there is wraparound on
boundaries (because of periodic boundary conditions), each
processor will have 26 neighbor processors. With an appropri-
ate overlap boundary size, as explained in Section 2.2.1, each
processor can determine the volume overlap or intersection
regions with its neighbors. The duplicate or “ghost” particles
in the overlap regions are communicated to each of spatially
contiguous neighbor processes to expand the volume of each
process.

2.2. Parallel Filtering and Rendering
The data, as it is read in, is treated as a parallel VTK un-

structured point data set in the visualization pipeline. The
“cosmo” format provides point position, velocity, mass, and a
tag available as data attributes (fields, or variables) per point
in a binary file. The data at this point can be rendered as is, us-
ing parallel point rendering colored by data attribute, or it can
be analyzed and manipulated through various parallel VTK
filter modules before rendering.

There are many built-in VTK filters available in ParaView,
and it takes a small amount of effort by an expert user to ex-
pose an existing VTK filter in ParaView that is not already
available by default. It involves creating an XML plugin to
tell ParaView how to interface with the VTK internals. Some
useful filters available by default in ParaView are the Calcula-
tor, Threshold, and Glyph filters. The Calculator filter allows
new derived fields to be calculated on the fly from existing
scalar, vector, and tensor fields using a mathematical expres-
sion. The Threshold filter discards data points that do not lie
within a given range for a data value. The Glyph filter gener-
ates new geometry per point that can be scaled and oriented
by attributes, such as spheres whose size is dependent on mass
or arrows that point in the direction of the velocity and scaled
by the velocity magnitude. Examples are shown in Section 3.
Finally, if a desired filter does not already exist in VTK, Par-
aView includes the capability to script new filters in Python.

2.2.1. An Efficient, Parallel, Friends-of-Friends Halo Finder
An important component of the new ParaView cosmology

capabilities is a very efficient parallel halo finding filter. The
base implementation is a fast serial FOF halo finder, with par-
allel integration added. For finding FOF halos, the user can
specify the linking length and the minimum number of par-
ticles defining a halo. ParaView returns a halo catalog con-
taining halos with average position, average velocity, one-
dimensional velocity dispersion, and mass for each halo. Op-
tionally, the original particle list can be also be annotated with
the halo information that each particle belongs to.

In order to achieve performance goals for the halo
finding algorithm, we first developed a new serial halo
finder (Hsu et al. 2010). A naive implementation of an FOF
finder would check each and every particle pair; given n par-
ticles, therefore requiring O(n2) operations, clearly an unac-
ceptable scaling. To reduce the number of operations, we use
a balanced kd-tree. A balanced kd-tree is a binary space parti-
tioning data structure that organizes points in a k-dimensional
space in such a way that the number of points in a subtree at
each level are equal. Building a fully balanced tree from n
points takes O(n logn) operations.



4 Woodring et al.

FIG. 3.— Strong scaling of the parallel halo finder in ParaView. The red
curve shows ideal scaling, while the blue curve shows the actual timing. The
problem size is fixed (2563 particles) as the number of cores is increased from
1 to 32. Scaling is close to ideal; reasons for the departures are discussed in
the text.

A recursive FOF algorithm starts at the leaf nodes (single
particles) and merges nodes into halos by checking if the par-
ticles are within a given range of each other. As particles are
merged into halos, particle tests are reduced by using subtree
bounding boxes as proxies for points. If a subtree bounding
box is too distant, all of the points can be skipped. Vice versa,
if an entire bounding box is close enough all of the points can
be added to a halo.

Once a fast serial FOF finder has been built, the next step
is to implement efficient parallelization. We use a straight-
forward strategy by dividing the simulation volume into per-
processor sub-volumes and allow these sub-volumes to over-
lap, as described in Section 2.1. The overlap length should be
larger than the diameter of the largest halo, usually ∼ 5 Mpc is
a conservative choice. This is done to ensure that each halo is
complete in at least one processor (overlapped) sub-volume.
Next, the algorithm finds all halos in the sub-volumes. The
last step is to ensure that each halo once is counted only once.
When a halo is shared between two processors across a plane,
it is assigned to the processor which has the halo in the up-
per plane (this is an arbitrary choice) and is eliminated from
the other. If it is shared by more than one processor, the in-
formation is sent to an arbitration processor that makes the
assignment and informs all other processors.

Strong scaling (execution time as a function of processor
number with fixed problem size) of the halo finder is demon-
strated in Figure 3. The test shown is carried out on a 32 core
shared memory machine with 128 GB of RAM. The test used
a 2563 particle simulation snapshot at z = 0. The actual timing
of the halo finder is slightly higher than the ideal value, due
to several reasons: (i) The halo finder is not fully load bal-
anced since a large halo would cause a certain processor to do
more work than others. For large volume simulations this is
not a severe problem since not very many exceptionally large
halos form. (ii) Due to the overlap strategy, the workload in-
creases as parallelism increases. (iii) The ideal curve does not
account for communication overhead. With these caveats in
mind, the scaling behavior of the halo finder is very good. In
addition, we also carried out a timing test on a 10243 particle
simulation in distributed memory MPI. Results are given in
Table 1.

TABLE 1
HALO FINDER TIMING FOR A BILLION PARTICLES

# of processors Time in sec
64 66.6

128 32.9
256 20.5

Halos do not have a uniquely defined notion of ‘halo cen-
ter’. Of the different possibilities, the center of mass is the
easiest to implement and fastest to run. In this case, the
particle-averaged position of the halo is given by

xFOF = ⟨x⟩ =
1

nFOF

nFOF
∑

i

xi, (1)

where xi is the position of the ith particle in the halo and nFOF
is the number of particles in the FOF halo. The halo center
of mass velocity is determined in an analogous fashion. Be-
cause this is the fastest way of determining the halo center, it
is the default setting we choose for ParaView. Of course this
definition has obvious shortcomings: e.g., if a halo is com-
prised of two distinct subhalos, the center of mass will lie
in between those subhalos and not at the center of the more
massive subhalo. A more accurate determination of the halo
center is therefore given by either finding the potential mini-
mum of the halo or to find the particle with the most neigh-
bors (these two centers are very close and for most halos in
fact identical). In future, ParaView will allow for this option
in addition to determining the center of mass.

In addition, the halo finder provides a measurement of the
one-dimensional velocity dispersion, given by:

σv =

√

√

√

√

1
3

(

1
nFOF

nFOF
∑

i

vi ·vi −vFOF ·vFOF

)

. (2)

In future, the set of halo properties calculated by ParaView
will be extended to include e.g. spherical overdensity mass
and halo concentration as well as sub-halo finding. The cur-
rent 3.8 release is limited to the aforementioned halo finding
features and halo properties.

3. ANALYSIS OF COSMOLOGICAL SIMULATIONS WITH
PARAVIEW

In this section we focus on a simple example to demon-
strate how ParaView can be used to gain better intuition for
cosmological structure formation by visualizing data sets and
at the same time can be used to analyze the data sets and to
extract quantitative information. The example we investigate
is the effect of the force resolution in the simulation on the
accuracy of halo masses.

The era of precision cosmology poses daunting challenges
to theoretical cosmologists. Accuracy requirements at the
1% level for simulations of highly nonlinear processes such
as structure formation demand extremely careful analyses of
possible systematic errors in N-body simulations. A pow-
erful probe of cosmology is the mass function which yields
the number of halos as a function of their mass. The mass
function is very sensitive to cosmological parameters and en-
ables us to, e.g., distinguish between different models of dark
energy. It was pointed out recently by Wu et al. (2010) and
Cunha & Evrard (2010) that in order to analyze the data from
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FIG. 4.— Force resolution and halo formation test: All results shown are for a linking length b = 0.2 and more than 3000 particles per halo. Results from the
high resolution run are shown in red, results from the low resolution run are shown in black. Left upper panel: particles in halos from the low resolution run
(black) and halo centers of halos from the low resolution run (red spheres) in a sub-volume of the simulation. The left lower panel has the same information but
with particles from the high resolution run (red) and centers (black spheres) from the low resolution run. The overlinking problem can be seen for several halos:
a very obvious example is a halo in the central region that links several structures together in the low resolution simulation. Also, the halos that are absent in the
low resolution simulation are clearly at the lower mass end, the red centers in the upper left plot correspond to small halos that can be identified in the lower left
plot. Note though, that these halos are not missing in the low resolution run, but rather not showing up in the plot because of our mass threshold of 3000 particles
– in other words they are there but are below our mass threshold. Several points are apparent from this comparison: the low resolution halos are less concentrated,
halos in the lower resolution run are more often overlinked, and some of the halos found in the higher resolution run are missing in the lower resolution run
because they fell below the 3000 particle cut. The right upper panel shows a histogram of the halo counts as a function of mass. For the lowest two mass bins,
the high resolution run has more halos than the low resolution run. The lower right panel shows the x-position versus halo mass, presenting the information in
the two left panels in condensed, but more quantitative form. It also shows that the positions of the halos in both simulations are in reasonable agreement.

future cluster surveys we need predictions for the mass func-
tion at the 1% level of acuracy. Bhattacharya et al. (2010)
find that uncertainties in the measurement of halo masses at
the 2% level translate into inaccuracies in the mass function in
the cluster mass regime at the 5-10% level. Therefore, under-
standing systematic biases of halo masses due to numerical
shortcomings is a significant issue (aside from problems with
the physical modeling itself) if we aim to predict the mass
function at high accuracy.

Two major sources of numerical inaccuracy in determining
halo masses are limitations in mass and force resolution. As
pointed out by Warren et al. (2006), and later investigated by
Lukić et al. (2007) for idealized Navarro-Frenk-White (NFW)
halos (Navarro et al. 1997), undersampling halos with parti-
cles, i.e. insufficient mass resolution, leads to a systematic
increase in the halo mass. The effect of insufficient force res-
olution is twofold: (i) The boundaries of the halo are not as

tight, therefore more particles from the surrounding area will
be linked to the halo and lead to a mass increase. (ii) The
concentration of the halo is considerably lower and less mass
resides in the halo center, which can lead to a decrease in the
total mass. We will use ParaView to investigate these force
resolution effects in more detail and show how the use of Par-
aView can provide an intuitive understanding as well as yield
quantitative results.

3.1. The Simulations
Our test analysis is based on a set of particle-mesh sim-

ulations, carried out with MC3 (Mesh-based Cosmology
Code on the Cell), a new hybrid cosmology code that takes
advantage of Cell-accelerated hardware (Habib et al. 2009;
Pope et al. 2010). We investigate a ΛCDM model with
the following cosmological parameters: ωm = 0.1296, ωb =
0.0224, nS = 0.97, σ8 = 0.8, and h = 0.72. We generate an
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FIG. 5.— Same as in Figure 4 but for a halo-finder linking length of b = 0.15. As expected, the discrepancies in the number of halos between the low and high
resolution runs further worsen (Cf. the halo count vs. mass histogram, top right); the “orphaned” red spheres in the upper left plot all correspond again to smaller
halos. But the overlinking problem is essentially absent.

FIG. 6.— Number count of halos vs. mass for halos with less than 2500
particles. Black line: low resolution simulation, red line: high resolution
simulation. Following our estimate, the low resolution simulation has fewer
halos than the high resolution simulation over the whole mass range consid-
ered.

initial condition with 2563 particles on a 2563 grid at a start-
ing redshift z = 200. We evolve these initial conditions with
two different uniform force grids: a 2563 grid and a 10243

grid. Therefore, the low resolution simulation has a force res-
olution of ∼1h−1Mpc and the higher resolution simulation, of
∼250h−1kpc. (Note that because this is a demonstration prob-
lem, the chosen parameters are not representative of those ac-
tually used in full-scale simulations.) For each simulation we
store the final timestep in the cosmo format which provides
the positions and velocities of the particles. For the mass field
we store the potential of each particle. These outputs can be
readily read into ParaView and be analyzed.

3.2. The Analysis
In Heitmann et al. (2006) we derived a simple criterion for

the force resolution required to resolve the mass and position
of halos with a linking length b = 0.2 reliably. This criterion
states that

δ f
∆p

< 0.62
[

nhΩ(z)
∆

]1/3

, (3)

where δ f is the force resolution (for a PM code, δ f /∆p =
np/ng with np being the cube root of the number of particles
and ng the cube root of the grid size), nh the number of par-
ticles per halo, ∆ the overdensity of interest measured with
respect to the critical density, and ∆p the particle separation.
A nominal choice of ∆ = 200 corresponds roughly to a “virial
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FIG. 7.— Visualization of one of the largest halos in the simulations: lower resolution (2563 grid, left), higher resolution (10243 grid, right). Shown are the
halos themselves (ellipsoids, oriented with respect to velocity and colored with respect to velocity dispersion measured in km/s) and particles within halos (within
a 20 h−1Mpc box centered around the major halo). The particles are represented by glyphs pointing in the velocity direction and colored with respect to their
potential value (arbitrary units). Halos which do not show particles around them are outside the chosen 20 h−1Mpc box. The white arrow in the right plot points
at a small subhalo missing in the lower resolution simulation plot on the left.

mass”. With this choice, the criterion predicts that the 2563

grid simulation should have sufficient resolution to capture
halos with more than 3000 particles for Ωm = 0.25. This claim
can be easily investigated with ParaView, and Figure 4 shows
the results. We identify all halos with more than 3000 par-
ticles (linking length of b = 0.2) and show the particles that
reside in halos for the different resolutions in a sub-volume.
In addition, as a quantitative result, ParaView provides the
overall number of halos found (116 for the high resolution
run, 110 for the low resolution run) and we show a histogram
of halo counts versus mass. This histogram indicates that the
5% discrepancy for the halo count is dominated by the smaller
halos. The very convenient feature now is that once the anal-
ysis plot is set up as, e.g., shown in Figure 4, we can readily
change the parameters for the halo finder and all panels will
automatically show the new results. This makes the analysis
task fast and convenient, allowing exploration of different set-
tings in a simple manner. As an illustration, by changing the
linking length to b = 0.15 in Figure 5, we find that the high
resolution simulation now has 84 halos compared to 65 ha-
los in the low resolution run, the difference between the two
having increased to 20%. This is to be expected as it corre-
sponds to an effective increase of ∆ in the denominator of
Eqn. (3), making the inequality harder to satisfy. If we lower
the mass cut for the halos to 1000 particles per halo, we find,
for b = 0.15, 487 halos in the high resolution run and 338 for
the low resolution run, a difference of 30%.

Figure 6 (also created within ParaView) summarizes the
results for halos with less than 2500 particles and a linking
length of b = 0.2. The red line represents the halo counts as
function of mass for the high resolution run, the black line
the low resolution run. Over the entire mass range, the high
resolution run has more halos.

As a next step we focus on a particular halo and investigate
its structure as a function of force resolution. We choose the
heaviest halo in the simulation that has no dominant substruc-
ture. The visualization of this halo and the quantitative infor-
mation available from ParaView allows us to investigate the
force resolution effects in more detail. First, we compare the
basic properties of the (b = 0.2) halo from the two simulations:
Table 2 summarizes the currently available halo properties as
measured by ParaView. The halo from the low resolution sim-
ulation is slightly heavier, though the difference is below the
percent level. The center of mass for both halos is also very
close, and differences are again below 1%. The force resolu-
tion effects become more apparent for the velocity properties
of the halos. The center of mass velocities differs at the 10%
level and the high resolution halo has a larger velocity disper-
sion, by about 20%.

Next, we visualize the chosen halo and its surrounding re-
gion, as shown in Figure 7. To do this, we first identify all ha-
los in the simulations with more than 100 particles. We then
focus on the halo of interest and select all the particles that re-
side in halos in a 20 h−1Mpc box around the central halo. We
zoom into the box while continuing to display halos which re-
side behind it. The particles are displayed as two-dimensional
glyphs pointing in the velocity direction of the particle. In ad-
dition, they are colored with respect to their potential value –
red corresponds to a shallow potential while blue corresponds
to a deep potential. The color coding is the same in both fig-
ures for ease of comparison. In addition to the particles within
the halos, we show the center of mass of each halo by an el-
lipsoid pointing in the direction of the center of mass velocity.
The halos are colored by their measured velocity dispersion σv
(lighter colors correspond to higher values for σv) and sized
with respect to their mass. We therefore have the following
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TABLE 2
BASIC HALO PROPERTIES

Low resolution halo High resolution halo
Mass [1015h−1M⊙] 1.34406 1.34344
Center of Mass [h−1Mpc] (128.8, 85.5, 219.8) (129.0, 85.6, 220.0)
CoM velocity [km/s] (-218.7, -94.2, -369.5) (-191.3, -82.1, -367.3)
σv [km/s] 795.06 1072.16

information about the halos depicted in this visualization: (i)
the number of halos in a certain region; (ii) the masses of ha-
los; (iii) their center of mass position and velocity; (iv) the
halo velocity dispersions; (v) velocity and position informa-
tion about particles within halos; (vi) the potential values of
the halo particles.

The first, and obvious, result of the local comparison is that
the lower resolution simulation has fewer halos overall. The
next immediate observation is the much deeper potential well
at the center of the high resolution central halo, as well as the
deeper potentials in the small neighboring halos. This deeper
potential will lead to a higher mass concentration in the center
of the central halo. It is also clear that the higher resolution
simulation shows more substructure, e.g., in the left upper part
of the central halo the high resolution result shows the forma-
tion of a small subhalo (marked by the white arrow) which is
absent in the low resolution run. Overall, there are more parti-
cles on the outskirts of the low resolution central halo; on the
left side many more particles appear to stream in to the halo.
Thus, at least for this halo – and consistent with the overall re-
sults – one may conclude that for massive halos, the two force
resolution effects compensate each other and the halo mass
remains robust. This result is also in good agreement with
the findings of Heitmann et al. (2005, 2008) and Lukić et al.
(2007). In those papers, the mass functions obtained with dif-
ferent codes were compared and good agreement established
even though the force resolution in the codes differed by up to
a factor of 10. In Bhattacharya et al. (2010) a more detailed
study was carried out analyzing halo mass differences from
different force resolution simulations. In that study, the differ-
ence in force resolution was much larger than here – two sim-
ulations with force resolutions different by a factor of 14 were
compared and the effect on the high mass halos was found to
be at 4%. Overall, these findings are encouraging with re-
spect to obtaining accurate predictions for the cluster mass

function from moderate resolution simulations. This relax-
ation of the spatial dynamic range requirement is particularly
useful for cluster simulations where a large volume is needed
to get good statistics for the associated mass function.

4. CONCLUSION

In this paper we have introduced ParaView as a powerful
and convenient visualization and analysis tool for large cos-
mological N-body simulations. ParaView is an open-source,
parallel visualization platform that can carry out visualization
and analysis tasks on desktops as well as on supercomputers.
We have implemented new readere and filters into ParaView
that are designed for easy and efficient analysis of cosmolog-
ical simulations. These tools include parallel particle readers
(cosmo and GADGET format are supported) and a very effi-
cient halo finder. The underlying infrastructure for the cos-
mology filters is taken from our recent code developments for
MC3. As the analysis code suite for MC3 evolves and matures,
we will port the new developments to ParaView. Currently, a
spherical overdensity halo finder and a sub-halo finder are un-
der final development.

In this paper, we demonstrated the use of ParaView and its
interface for analyzing and visualizing cosmological simula-
tion with a few examples, focusing on the effects of force res-
olution on the halo mass function in the cluster regime. The
strength of ParaView is the ability of summarizing a large
number of attributes of the simulation in a compelling visu-
alization and at the same time, allow for visualization-aided
analysis – the availability of quantitative information, allied
to the visualization itself. Together with manipulation and
analysis tools such as a calculator and binning routines, we
believe that ParaView will be a very valuable new tool for the
cosmology community.
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awarded to us under the LANL Institutional Computing Ini-
tiative. Part of this research was supported by the DOE under
contract W-7405-ENG-36. The authors acknowledge support
from the LDRD program at Los Alamos National Laboratory.

APPENDIX

In this appendix we provide some usage tips on visualizing cosmological N-body simulations with ParaView. Figure 8 shows
a screenshot of the ParaView GUI interface. The first step is to read the particle file of interest. If the filename ends in .cosmo
the ParaView reader will automatically identify the file as cosmo format and choose the correct reader. If the ending is different,
a menu will appear and the user can pick by hand which format the reader should use. Once the cosmo format is specified, the
user needs to enter the box size, the number of particles in one dimension, and the overload length that should be used for the
halo finder. In the screenshot, the particle file that was read in was called "particle_white_lg" as apparent from the left upper list.
Once the file is read in, some information is readily available and can be accessed by using the Information tab (e.g. number
of particles, minimum and maximum velocities and positions). The Display tab opens choices for displaying the particles – the
default option under “Style” and then “Representation” is “Outline” which will simply draw a box around the whole particle
distributions. Changing this option to “Points” (as is done in the figure) will display the actual particles. Some of the particle
attributes can then be changed, e.g. the size and the color options. The “eye” next to the particles_white_lg can be activated
or de-activated by clicking on it – in our example it is de-activated which means that we do not show all the particles from the
simulation, as explained below.

Next, we can apply a filter to the data as shown in the upper part of the figure. In the example, we evoke the halo finder. As in
the case of the particle reader, options appear under “Properties" so that the linking length, minimum number of particles per halo
and overload length can be specified. The halo finder then generates two new output files, “Output-0” and “Output-1”. The first
file holds all particles with the additional information of the halo tag. Particles which are not in a halo have the tag -1. By using
another filter, “threshold” and requesting only particles to be displayed with halo tags ≥0, all particles in halos can be displayed.
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FIG. 8.— Screenshot of the ParaView GUI. Shown are particles within halos as two-dimensional glyphs and halo centers colored with respect to their mass.
ParaView allows for easy changes in the properties of the displayed particles (in this case, e.g., linking length and minimum number of particles in a halo for the
halo finder), properties of the visualization itself, such as color schemes, and quantitative information about the data set, e.g., maximum and minimum positions,
velocities, and tags of particles or halo counts.

In the example, we decided to show these particles as two-dimensional arrows colored with respect to velocities. In order to do
this, we used another filter “Glyphs” which allows for this option. As the activated eye next to “Glyph1” shows we are displaying
these glyphs in the main window. “Output-1” contains the actual halo catalog. Again, by choosing “Information”, measurements
of halo properties such as mass ranges and velocities will be shown. In the figure, “Output-1” is shaded in blue, which means the
menu below can be manipulated for that output. In the current case, the halos are shown as points of size 8 colored with respect
to mass.
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